凉亭,一堂讲解课正在进行,为宇文温送来资料的陈婤,听修炼“数学神功”略有小成的尉迟明月讲课,尉迟明月所说内容,就是“数理统计”。
数理统计是数学的一个分支,以概率论为基础,研究大量随机现象的统计规律性。
要进行数理统计,需要搜集各类资料、数据,然后进行整理、分组,在各项数据的基础上,根据资料归纳出的规律性,对总体进行推断和预测。
尉迟明月把数理统计的作用吹得天上有、地上无,陈婤不信。
陈婤认为,学好一般的算术就足够了,何必学什么玄之又玄的“概率论”和“数理统计”,尉迟明月急切间说不了太多大道理,便针对陈婤的看法进行反驳。
思考片刻,尉迟明月提了个问题:
某列车在某铁道上行驶,从甲地到乙地时,因为要会车,所以速度慢,平均时速三十里,从乙地到甲地时,不需要会车,所以速度快,平均时速六十里。
那么,该列车在该铁道上往返的平均时速是多少?
陈婤想了想,答道:“平均时速四十五里。”
尉迟明月摇摇头:“错,是平均时速四十里。”
陈婤不服:“这不对吧,三十加六十,再除以二,不就是四十五么?如何算得四十来?”
尉迟明月回答:“你算的是算术平均数,然而,平均数并不只有算术平均数,还有几何平均数、倒数平均数等,方才那个问题,要用倒数平均数来算...”
“倒数平均数适用于计算相同路段、不同往返速度的平均值,所以,这道题应该是先把两个数倒过来,计算出和之后,再...算式是这样...”
尉迟明月在纸上写了算式:2 /(1/30 + 1/60)=40
“这个问题,必须用倒数平均数来计算,不然,若铁路管理者按算术平均数来决策的话,会出现许多难以解释的问题。”
陈婤琢磨了一下,恍然大悟:“原来如此,那几何平均数又是什么呢?”
尉迟明月不急着回答,又问了个问题:“假设我们有一笔五年期存款,本金为十万钱(十万文,即一百贯),存在银行或柜坊,其每年的利率是变动的...“
她提笔在纸上写,边写边说:“假设,年利率为:1%、9%、6%、2%、15%...”
“现在,我们想要算平均年利率,并据此计算五年后本金和利息的总和,那么该怎么算呢?”
这道应用题,陈婤知道如何算,她一边说一边提笔写算式:“用本金连续乘以每年的...”
“所以计算过程是:100000× 1.01 × 1.09 × 1.06 × 1.02×1.15 = 136883.70。”
尉迟明月点点头,又说:“还有另外一种方法来算,你知道么?”
陈婤想了想:“呃..用平均值?”
她见对方点头,于是提笔写另一个算式:“我们应该‘平均’这五年的利率...“
“若写成算式,应该是(0.01 +0.09 +0.06 +0.02 +0.15)÷ 5 =0.066 ,也就是6.6%...”
陈婤拿起一个新式乘方计算器(手摇式),摇起来:“然后我们将平均利率代入复利计算公式:100000×(1.066^ 5 - 1)+ 100000 = 137653.11...哎?怎么...怎么多了七百...七百余文?”
她放下计算器,疑惑的看着尉迟明月。
“你也发现不对了吧?问题出在哪里呢?”尉迟明月先问后答,“这种算法犯了一个常见的错误:把加法操作应用于相乘过程,得出的结果当然不准。”
尉迟明月说完,又拿出一张纸开始列算式:“那么,我们试试用几何平均数计算平均年利率...“
“1.01 × 1.09× 1.06 ×1.02 × 1.15 = 1.368837042”
“将结果开5次方根,那就得到几何平均数....”
尉迟明月用一台新式开根号计算器(手摇式)计算,摇了一会,算得结果为:1.064805657,约为1.0648。
再摇起那台乘方计算器:“我们将这个几何平均数代入复利计算公式:100000 ×(1.0648 ^ 5 - 1)+ 100000 = 136883.70“
“看看,这不就和逐年计算所得的结果一样么。”
陈婤仔细的看了许久,最后恍然大悟:“原来如此!”
陈婤经常往日兴昌银行存钱,基于对日兴昌的绝对信任,她都是让业务员给出存款到期后本金加利息的总和,所以,不清楚具体的平均数算法。
尉迟明月笑道:“所以呀,不能一看到‘平均’二字,就简单的将数据相加然后除以数据的总数,那样算出来的是算术平均值,而许多地方要用的是几何平均值,或者倒数平均值。”
“这都是数理统计里的名词和算法,虽然寻常人日常不太用得着,但是,用来做买卖却是如虎添翼。”
一直在旁边当听众的宇文温,现在总算是有机会发话了,他看向陈婤,说:“对,你不要小看了这两门学问,可真是赚钱利器,譬如卖保险...”
“保险承保的风险,也就是意外,这是随即发生的,所以存在发生的概率,那么基于概率论出现的保费、赔率计算,就是一门不得了的学问。”
“如果概率论用得好,保险商社可以确保稳赚不赔,而且赚得还不少。”
“同样,数理统计可以解决投资问题,让人能够从不同的投资方案里,通过数学计算,确定最佳投资方案,这样的例子有很多,说上几夜都说不完。”
陈婤最相信宇文温了,听得夫君都这么“吹”,不由得感慨起来:“这两门学问如此重要,是不是将来科举也要考呢?”
宇文温摇摇头:“没这必要,这已经是专业领域的学问,考科举的学子们,只需要知道相关概念和简单应用即可。”
“术业有专攻,学这种当官后很大概率用不上的知识,会降低学习效率,但是,若要走技术官僚路线,那就是必须学的。”
“或者,只会做学门,不擅长做官的人,也可以考虑靠数学吃饭。”
陈婤有些好奇:“靠数学吃饭?此话怎讲?”
宇文温小心将两台造价不菲的手摇计算机放好,笑道:“很简单,在黄州,工商业者遇到的许多难题,都会在州学悬赏,请数学家们或精通数学的学者们来解决,只要有人解决了,那么赏格就到手了。”
“那些沉迷于数学的人,可以担任教师,有一份稳定的工作和收入,然后,根据商会发布的悬疑问题,和同好们一起进行技术攻关。”
“攻关成功,有赏格,攻关未果,那也不要紧,能和同好们研究、讨论数学问题,也能让数学爱好者们甘之如饴。”
“这样的风气,已经持续二十多年,许多宝贵的数学公式,就是在一次次悬赏中诞生的,悬赏者们靠着这些科学的解决方案,解决了无数疑难问题,获得不菲的经济利润。”
“同时,许多数学家、爱好者,也不断从中提高理论水平,还发现了许多新理论和公式,更重要的是,靠着知识可以换来体面的生活,这让许多醉心于学术研究的学者们,完全没了后顾之忧。”
“在黄州,聚集着大量数学家、学者以及爱好者,他们定期举办学术会议,不断地完善各种数学理论。”
“与此同时,许多人靠着数学发家,一人养活全家人,夏天吹得起空调、冬天用得起暖气,成为耀眼的榜样。”
“那些运用数学知识解决经济问题的工商业者,同样凭着优异的业绩,成为同行眼中的榜样。”
说到这里,宇文温有些小高兴:“榜样的力量是巨大的,学者靠学问吃饭,商家靠数学赚大钱,让越来越多的人投身于数学这门深奥学问的研究中去,都不需要朝廷作动员。”
“越来越多的商家,开始学着用数学的方式解决经济问题,精通数学的人,越来越吃香,这意味着什么?”
“意味着,作为科学基础的数学,因为实用,所以越来越受重视,随着经济的快速发展,巨大利益的驱动下,会加快数学这门学问的发展,连带着推动其他学科的发展。”
陈婤见着宇文温把数学说得如此前途光明,颇感兴趣:“那,二郎教妾概率论好么?”
“啊?啊.....好...”宇文温的语气瞬间低了不少,尉迟明月不知道夫君在这方面是个半桶水,也趁热打铁:”二郎!妾也有不少问题弄不明白,得二郎指点一二才行...“
“呃....”宇文温不愿意承认自己在这方面是“鶸”,碍于面子又不好推辞,思来想去,想到一个金蝉脱壳的办法:“你们有没有听说过一个理论?”
陈媗和尉迟明月同问:“什么理论?”
宇文温故作神秘状:“那就是....波粒二象性...”