“如果认为电子具有自旋,那么,我想,就能很轻松地解释光谱的精细结构,以及反常塞曼效应。”
塞曼效应,是指原子光谱在磁场中一分为三的一种现象,是1896年由荷兰阿姆斯特丹大学的彼得·塞曼在实验中偶然发现的。
塞曼把这个现象报告给了自己的老师洛伦兹,后者用理论很好地对这个现象做出了解释。
于是两人在1902年,共同获得了当年的诺贝尔物理学奖。
但是在塞曼发现这个以他名字命名的效应的一年之后,又有实验物理学家们发现,有时候,谱线并不会一分为三而是变为多条,谱线之间的间隔也不尽相同。
所以后来人们把谱线一分为三的现象叫做正常塞曼效应,而其他情况则被称为反常塞曼效应。
此时正坐在台下C位,被卢瑟福和居里夫人夹在中间的洛伦兹,对陈慕武在话语中提到的反常塞曼效应很感兴趣。
因为他当年的理论只能解释正常的那一半,而对另一半反常效应却无能为力。
这一现象的理论解释,则是已经足足困扰了当今物理学家们二十多年。
因此洛伦兹虽然已经退休,但他的注意力还是被陈慕武所吸引,思维也是跟着他的演讲仔细思考起来。
甚至听到兴起时,他还举手提问道:“陈,你说电子的自转,哦不,自旋,所以才能因此产生磁矩,对吗?”
“是这样的,洛伦兹教授,这也就是为什么,一条光谱会在磁场中分裂为多条。”
“那么这个自旋的具体数值是多少,是二分之一吗?”
“没错,我想电子的自旋角动量,正应该是正负二分之一约化普朗克常数,前面的正负关系,满足右手定则。”
洛伦兹之所以知道这个数值是二分之一,因为早在1921年,来自德国图宾根大学的阿尔弗雷德·朗德教授在研究反常塞曼效应时,认为描述电子状态的磁量子数m不应该取整数,而应该在整数后面加上一个二分之一。
但这个二分之一究竟是什么,就没人能说得清了。
现在陈慕武一提到电子还有自旋,那么自旋同样能产生磁矩,洛伦兹自然就联想到了那个让人纠结的二分之一。
台下的洛伦兹稍微沉吟了一会儿,他开始在心中进行起了一个定性半定量的计算,偶尔还拿起笔来,在纸上写写画画。
半晌之后,洛伦兹才开口说道:“陈,我想你这次可能在这个问题上,犯了一个大的错误。”
“请教授您指教。”
听到自己提出来的自旋被洛伦兹给否定,陈慕武不但不惊讶,反而仍是信心十足。
他甚至都知道,洛伦兹接下去要说些什么。
“你说电子的自旋角动量是普朗克常量,那么也就是10-^3^4数量级,自旋角动量又是电子质量、速度和半径的乘积,电子质量是10-^3^0数量级,而电子的半径是10-^1^6数量级。
“但是,按照爱因斯坦的相对论理论,世界上没有速度可以超过光速,所以按照你给出的数据,我们得到了一个错误的答案。
“这也就说明,事情的真相只可能有两种情况,一是电子并没有自旋,二是即使有自旋,他的数值也不会是你给出来的这个,而是应该比它小上很多才对。”
“但我个人还是倾向于第一种,也就是说电子并不存在自旋这回事。”
洛伦兹一番话说完,场下的观众都跟着点了点头,表现出一副大佬儿说的话很有道理的意思。
金无足赤,人无完人,陈慕武震惊物理学界了这么久,也总该有一次犯错误的时候了吧?
只有卢瑟福稍微皱了皱眉头。
因为一年多的时间相处下来,特别是最近,陈慕武还亲自设计实验,证明了那个他原本以为是异想天开的电子波动理论。
这让卢瑟福在心中已经有些默认,不管陈慕武提出什么理论,基本上都是准确无误的,他就是有这样天才般的敏锐的物理学直觉。
而且,刚刚陈慕武在引出电子具有自旋这一属性的时候,还列举出了自己过去提出来的原子太阳系模型。
听到这段话时,卢瑟福还有些洋洋自得,看来自己这个已经玻尔改进的模型,也并不是一无是处。
但洛伦兹的一番话,就否定了陈慕武的自旋假说,一荣俱荣,一损俱损,他老卢脸上也有些挂不住。
不过,看台上自己这位学生,仍然面不改色心不跳,难道他已经想好了应对洛伦兹这个诘难的答案了吗?
正像卢瑟福想的那样,陈慕武一听见洛伦兹提出来电子自旋有问题,就立刻明白了他说的问题出在哪里,也就给出了问题的解决办法。
事实上,在原时空里,提出自旋理论的塞缪尔·古德斯密特和乔治·乌伦贝克,当时只是荷兰莱顿大学的两名学生。
他们痴迷于泡利不相容原理,然后提出来电子自旋这个概念,向他们的老师保罗·埃伦费斯特提交了一篇篇幅不足一页的论文。
埃伦费斯特一边让他们把论文发表在《自然》周刊这本物理学期刊上,一边又给荷兰国内德高望重的洛伦兹写信介绍了这个新理论。
然后洛伦兹在回信中,就以电子自旋的线速度超越了光速为由,否定了这个新理论。
埃伦费斯特把洛伦兹的回信给两位学生看过之后,两人请求自己的老师,向期刊编辑部写信要求撤回这篇论文。
但可能是埃伦费斯特这时候犯了懒,就劝自己的两个学生,你们还年轻,在期刊上犯个错误,丢个人,也不是什么大问题。
就是因为这个一时犯懒的理由,才能让这篇论文歪打正着地最终问世,电子自旋才在物理学界引起了轩然大波。
没想到,现在换成陈慕武在索尔维会议上提出了电子自旋的概念,洛伦兹仍然是第一个跳出来,以电子速度超光速这个理由,反对电子具有自旋的物理学家。
其实陈慕武有许多种能反驳洛伦兹诘难的办法,比如说自旋其实是粒子的一种本征内禀属性,并不是真的像地球在自传。
或者说不应该把电子看成是一个实心球模型,而是像光子那样看成是一个没有大小的点粒子等等。
但上面这些答案有的回答起来太麻烦,而有的涉及到的知识又太超前。
现在量子力学还没有真正被建立,不管是玻尔也好还是索末菲也好,都是在旧量子论中构建的原子模型,也就是用半经典半量子的方式,来处理微观世界中的问题。
所以陈慕武只能选择以子之矛攻子之盾,既然洛伦兹提到了相对论的事情,那么就依然用相对论来反击就好了。
“洛伦兹教授,既然您提到了相对论,也提到了说如果电子有自旋,那么它的速度就将超越光速。
“众所周知,速度越大,那么γ就越趋近于零。这样一来,在高速条件下,电子的质量也会随着速度的增大而增大,此时再去计算电子的速度,就会发现其并没有超过光速,仍然是符合相对论光速不变原理的。”
包括洛伦兹在内的现场物理学家们,听完陈慕武的“辩解”之后,又同样觉得他说的也很有道理。
“那么,除了反常塞曼效应之后,还能不能再设计出一种实验来,用以验证电子确实具有自旋这个属性呢?”
台下又有人提问道。
没有爱因斯坦,也没有玻尔,观众们基本上都是各个实验室的领头人。
虽然陈慕武提出来的电子自旋,或许能够很好地解释光谱的精细结构和反常塞曼效应,但他们总想着再找到一个确切的实验,能完全证明,电子确实有自旋。
“十分抱歉,我只是因为看到卡文迪许实验室的同学斯通纳刚好在做这个实验,才想到了第四个量子数,又因为朗德教授的研究珠玉在前,才想到了这个二分之一,会不会是电子的自旋这个解释。
“至于如何设计新的实验,对电子是否存在自旋进行验证?很抱歉,我目前对这个问题,还没有具体的想法和思路。”
陈慕武说完,又在台上讲了几句结束语,就总算完成了他在本届索尔维会议上的发言。
虽然时间远远超过了大会规定的二十分钟,但现场却没人在意这件事情。
毕竟他提出了第四个量子数,已经是算是原子模型中的一个重大进展。
更何况,陈慕武再次语不惊人死不休——已经没人能数的清,这一年多以来,他到底提出过多少个惊人的理论了。
在众人的掌声中,陈慕武仍然回到了那个属于自己的角落里。
他没有再继续听接下来的人发表的演讲,而会场中的大部分人也都心不在焉,大脑中思考着的。都是刚刚听到电子自旋。
几分钟之后,叼着烟斗的卢瑟福起身离席,看那意思,好像是要去场外抽一袋烟。
路过陈慕武身边时,卢瑟福不经意地敲了敲他的桌角,示意陈慕武跟自己一起到会场外面去。